В цепь индукционной катушки II включим в качестве индикатора тока лампочку накаливания и последовательно с ней реостат. Индукционный ток, переменный по силе и направлению, проходя через нить лампочки, будет ее нагревать и может довести до яркого накала. Не меняя ни катушек, ни их взаимного расположения, увеличим сопротивление индукционной цепи в два-три раза, передвигая движок реостата. Мы увидим, что лампочка будет светиться значительно более слабым, красноватым накалом, что указывает на уменьшение тока, идущего через нее.
Заменив лампочку тепловым амперметром (§ 44), мы можем измерить силу индукционного тока; измеряя, кроме того, полное сопротивление всей цепи, мы убедимся в том, что и для индукционных токов справедлив закон Ома (§ 46):
где I — сила тока, R — полное сопротивление цепи, т. е. сумма сопротивления индукционной катушки и сопротивления остальных частей цепи (реостата, лампочки, амперметра и т. д.), а через обозначена э. д. с. индукции, остающаяся неизменной при изменении сопротивления цепи в наших опытах.
С понятием э. д. с. мы встречались уже раньше при рассмотрении вопроса об условиях возникновения и поддержания электрического тока в цепи (§ 39). Существенное различие между случаями, рассмотренными ранее (гл. VI), и э. д. с. индукции заключается в следующем. В случае гальванического элемента, аккумулятора или термоэлемента мы могли установить, что э. д. с. возникает в определенных местах цепи тока, именно, в пограничном слое между металлом и электролитом или в месте контакта двух различных металлов. В случае же индукции э. д. с. не сосредоточена в том или ином участке цепи, но действует во всей индукционной цепи в целом, т. е. во всех точках цепи, где изменяется поток магнитной индукции.
В случае витка, охватывающего линии поля, э. д. с. возникает во всех точках витка и может быть подсчитана для витка в целом. В случае нескольких витков то же происходит в каждом из них: э. д. с. катушки складывается из э. д. с. отдельных витков.
§ 141. Электродвижущая сила индукции. Итак, мы установили, что в процессе индукции возбуждается э. д. с. индукции, благодаря чему в проводниках возникает ток, сила кото-
332
рого определяется по закону Ома через э. д. с. индукции и сопротивление цепи. Чем же определяется э. д. с. индукции? Если присмотреться ко всем индукционным опытам (§ 137), то легко обнаружить, что сила индукционного тока в контуре, а следовательно, и э. д. с. индукции, оказывается различной в зависимости от того, быстро или медленно мы производим изменение магнитного потока, являющееся необходимым условием возникновения индукции. Чем медленнее происходит процесс изменения магнитного потока, тем меньше э. д. с. индукции и тем меньше индукционный ток при заданном сопротивлении цепи. Таким образом, осуществляя определенное изменение магнитного потока за различное время, мы получаем различную э. д. с. индукции. Если в момент t1 магнитный поток имел значение Ф1, а к моменту t2 его значение стало равным Ф2, то за время ?t=t2—t1 произошло изменение магнитного потока на ?Ф=Ф2—Ф1. Отношение ?Ф/?t дает изменение магнитного потока в единицу времени, т. е. представляет собой скорость изменения магнитного потока. Измерения, выполненные при различных условиях опыта (в любом контуре, при любом изменении значения магнитного потока и т. д.), показывают, что э. д. с. индукции зависит только от скорости изменения магнитного потока. А именно: далее 


Используются технологии uCoz